[image:]

11_Performance_Cost/DB_Cost_Management_Guide.docx

Databricks Cost Management Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	FinOps & Platform Team

1. Executive Summary
This guide provides comprehensive strategies for managing and optimizing costs on the Databricks platform. It covers cost visibility, budgeting, allocation, optimization techniques, and governance policies. Following these guidelines helps organizations maximize value from their Databricks investment while maintaining financial control.
Cost Management Principles
Effective cost management follows these principles:
Visibility: You can't optimize what you can't see
Accountability: Teams own their resource consumption
Optimization: Continuously right-size resources
Governance: Policies prevent waste before it happens
Culture: Cost awareness is everyone's responsibility
2. Databricks Pricing Model
2.1 Understanding DBUs
Databricks Unit (DBU) is the processing capability unit. Cost = DBUs consumed × DBU price per hour.
┌───┐
│ DATABRICKS COST COMPONENTS │
├───┤
│ │
│ TOTAL COST = DATABRICKS COST + CLOUD INFRASTRUCTURE COST │
│ │
│ ┌───┐ │
│ │ DATABRICKS COST (DBU-BASED) │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ All-Purpose │ │ Jobs Compute │ │ SQL Warehouse │ │ │
│ │ │ Compute │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ Higher DBU │ │ Lower DBU │ │ SQL-specific │ │ │
│ │ │ rate per hour │ │ rate per hour │ │ DBU rate │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ │ │ │
│ │ + Photon Premium (if enabled) │ │
│ │ + Serverless Premium (if using serverless) │ │
│ │ + Unity Catalog (included in most plans) │ │
│ │ │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ CLOUD INFRASTRUCTURE COST │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Compute │ │ Storage │ │ Network │ │ │
│ │ │ (EC2/VMs) │ │ (S3/ADLS) │ │ (Egress) │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
└───┘
2.2 SKU Comparison
	SKU Type
	Use Case
	Relative DBU Cost
	Best For

	All-Purpose
	Interactive development
	Higher
	Exploration, debugging

	Jobs Compute
	Automated workloads
	Lower
	Scheduled ETL, ML training

	Jobs Compute Light
	Orchestration only
	Lowest
	Workflow orchestration

	SQL Classic
	SQL analytics
	Moderate
	Ad-hoc queries

	SQL Pro
	Advanced SQL
	Higher
	Complex analytics

	SQL Serverless
	Variable SQL workloads
	Premium
	Unpredictable demand

3. Cost Visibility
3.1 System Tables for Cost Analysis
Databricks provides system tables for detailed cost analysis:
-- Daily cost summary by workspace and SKU
SELECT
 usage_date,
 workspace_id,
 sku_name,
 usage_unit,
 ROUND(SUM(usage_quantity), 2) as total_dbus,
 ROUND(SUM(usage_quantity * list_price), 2) as list_cost_usd
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
GROUP BY usage_date, workspace_id, sku_name, usage_unit
ORDER BY list_cost_usd DESC;

-- Cost by cluster (identify expensive clusters)
SELECT
 cluster_id,
 MAX(usage_metadata.cluster_name) as cluster_name,
 COUNT(DISTINCT usage_date) as active_days,
 ROUND(SUM(usage_quantity), 2) as total_dbus,
 ROUND(SUM(usage_quantity * list_price), 2) as total_cost_usd,
 ROUND(AVG(usage_quantity * list_price), 2) as avg_daily_cost
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
AND cluster_id IS NOT NULL
GROUP BY cluster_id
ORDER BY total_cost_usd DESC
LIMIT 20;

-- Cost by job (identify expensive jobs)
SELECT
 usage_metadata.job_id,
 MAX(usage_metadata.job_name) as job_name,
 COUNT(*) as run_count,
 ROUND(SUM(usage_quantity), 2) as total_dbus,
 ROUND(SUM(usage_quantity * list_price), 2) as total_cost_usd,
 ROUND(AVG(usage_quantity * list_price), 2) as avg_cost_per_run
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
AND usage_metadata.job_id IS NOT NULL
GROUP BY usage_metadata.job_id
ORDER BY total_cost_usd DESC
LIMIT 20;

-- Cost by user (for accountability)
SELECT
 identity_metadata.run_as as user_email,
 ROUND(SUM(usage_quantity), 2) as total_dbus,
 ROUND(SUM(usage_quantity * list_price), 2) as total_cost_usd
FROM system.billing.usage
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
AND identity_metadata.run_as IS NOT NULL
GROUP BY identity_metadata.run_as
ORDER BY total_cost_usd DESC;
3.2 Cost Trend Analysis
-- Weekly cost trends
SELECT
 DATE_TRUNC('week', usage_date) as week_start,
 sku_name,
 ROUND(SUM(usage_quantity), 2) as weekly_dbus,
 ROUND(SUM(usage_quantity * list_price), 2) as weekly_cost_usd,
 -- Week-over-week change
 ROUND(
 (SUM(usage_quantity * list_price) -
 LAG(SUM(usage_quantity * list_price)) OVER (
 PARTITION BY sku_name ORDER BY DATE_TRUNC('week', usage_date)
)) /
 NULLIF(LAG(SUM(usage_quantity * list_price)) OVER (
 PARTITION BY sku_name ORDER BY DATE_TRUNC('week', usage_date)
), 0) * 100,
 1
) as wow_change_pct
FROM system.billing.usage
WHERE usage_date >= DATEADD(WEEK, -12, CURRENT_DATE())
GROUP BY DATE_TRUNC('week', usage_date), sku_name
ORDER BY week_start DESC, weekly_cost_usd DESC;

-- Identify cost anomalies (days with unusual spend)
WITH daily_costs AS (
 SELECT
 usage_date,
 SUM(usage_quantity * list_price) as daily_cost
 FROM system.billing.usage
 WHERE usage_date >= DATEADD(DAY, -90, CURRENT_DATE())
 GROUP BY usage_date
),
stats AS (
 SELECT
 AVG(daily_cost) as avg_cost,
 STDDEV(daily_cost) as stddev_cost
 FROM daily_costs
)
SELECT
 d.usage_date,
 ROUND(d.daily_cost, 2) as daily_cost_usd,
 ROUND(s.avg_cost, 2) as avg_cost_usd,
 ROUND((d.daily_cost - s.avg_cost) / s.stddev_cost, 2) as z_score
FROM daily_costs d, stats s
WHERE ABS((d.daily_cost - s.avg_cost) / s.stddev_cost) > 2
ORDER BY d.usage_date DESC;
3.3 Cost Dashboards
-- Create cost summary view for dashboards
CREATE OR REPLACE VIEW finance.cost_summary AS
SELECT
 usage_date,
 workspace_id,
 -- Extract team from tags or cluster name
 COALESCE(
 usage_metadata.cluster_tags['Team'],
 REGEXP_EXTRACT(usage_metadata.cluster_name, '\\[([^\\]]+)\\]', 1),
 'Unassigned'
) as team,
 sku_name,
 usage_metadata.job_id,
 usage_metadata.job_name,
 cluster_id,
 usage_metadata.cluster_name,
 identity_metadata.run_as as user,
 ROUND(usage_quantity, 4) as dbu_quantity,
 ROUND(usage_quantity * list_price, 2) as list_cost_usd
FROM system.billing.usage;

-- Dashboard query: Cost by team (last 30 days)
SELECT
 team,
 ROUND(SUM(list_cost_usd), 2) as total_cost,
 ROUND(SUM(CASE WHEN sku_name LIKE '%ALL_PURPOSE%' THEN list_cost_usd ELSE 0 END), 2) as interactive_cost,
 ROUND(SUM(CASE WHEN sku_name LIKE '%JOBS%' THEN list_cost_usd ELSE 0 END), 2) as jobs_cost,
 ROUND(SUM(CASE WHEN sku_name LIKE '%SQL%' THEN list_cost_usd ELSE 0 END), 2) as sql_cost
FROM finance.cost_summary
WHERE usage_date >= DATEADD(DAY, -30, CURRENT_DATE())
GROUP BY team
ORDER BY total_cost DESC;
4. Cost Allocation
4.1 Tagging Strategy
Implement consistent tagging for cost allocation:
Required tags for all clusters and jobs
required_tags = {
 "Team": "data-engineering", # Team ownership
 "Project": "sales-analytics", # Project/initiative
 "CostCenter": "DE-100", # Finance cost center
 "Environment": "production", # dev/staging/production
 "Owner": "jane.doe@company.com" # Individual owner
}

Apply tags to cluster
cluster_config = {
 "spark_version": "14.3.x-scala2.12",
 "node_type_id": "m5.2xlarge",
 "num_workers": 4,
 "custom_tags": required_tags
}

Apply tags to job
job_config = {
 "name": "Daily ETL Pipeline",
 "tags": required_tags,
 "tasks": [...]
}
4.2 Enforcing Tags with Cluster Policies
from databricks.sdk import WorkspaceClient
import json

w = WorkspaceClient()

Cluster policy enforcing required tags
policy_definition = {
 "custom_tags.Team": {
 "type": "fixed",
 "value": "data-engineering"
 },
 "custom_tags.CostCenter": {
 "type": "fixed",
 "value": "DE-100"
 },
 "custom_tags.Environment": {
 "type": "allowlist",
 "values": ["development", "staging", "production"]
 },
 "custom_tags.Owner": {
 "type": "regex",
 "pattern": "^[a-zA-Z0-9._%+-]+@company\\.com$"
 }
}

policy = w.cluster_policies.create(
 name="data-engineering-policy",
 definition=json.dumps(policy_definition)
)
4.3 Chargeback/Showback
-- Monthly chargeback report by team
CREATE OR REPLACE VIEW finance.monthly_chargeback AS
SELECT
 DATE_TRUNC('month', usage_date) as billing_month,
 team,
 cost_center,
 ROUND(SUM(list_cost_usd), 2) as total_cost_usd,
 -- Add contracted rate if different from list price
 ROUND(SUM(list_cost_usd) * 0.8, 2) as contracted_cost_usd -- 20% discount example
FROM finance.cost_summary
GROUP BY DATE_TRUNC('month', usage_date), team, cost_center;

-- Generate chargeback report
SELECT
 billing_month,
 team,
 cost_center,
 total_cost_usd,
 contracted_cost_usd,
 -- Running total for the year
 SUM(contracted_cost_usd) OVER (
 PARTITION BY team
 ORDER BY billing_month
 ROWS UNBOUNDED PRECEDING
) as ytd_cost
FROM finance.monthly_chargeback
WHERE billing_month >= DATE_TRUNC('year', CURRENT_DATE())
ORDER BY billing_month DESC, total_cost_usd DESC;
5. Cost Optimization Techniques
5.1 Cluster Optimization
1. Use job clusters instead of all-purpose clusters
Job clusters are cheaper and auto-terminate

2. Right-size clusters based on workload
Monitor cluster utilization and adjust

3. Enable auto-termination for interactive clusters
cluster_config = {
 "autotermination_minutes": 30, # Terminate after 30 min idle
}

4. Use spot/preemptible instances
spot_config = {
 "aws_attributes": {
 "availability": "SPOT_WITH_FALLBACK",
 "spot_bid_price_percent": 100,
 "first_on_demand": 1 # Driver on-demand, workers spot
 }
}

5. Use instance pools for faster startup and better spot availability
pool_config = {
 "instance_pool_name": "data-engineering-pool",
 "node_type_id": "m5.2xlarge",
 "min_idle_instances": 2, # Keep 2 warm for fast startup
 "max_capacity": 20,
 "idle_instance_autotermination_minutes": 10,
 "aws_attributes": {
 "availability": "SPOT"
 }
}
5.2 SQL Warehouse Optimization
-- 1. Use serverless for unpredictable workloads
-- Scales to zero, pay only for queries

-- 2. Right-size warehouse for workload
-- Small: ad-hoc queries
-- Medium: dashboards with moderate concurrency
-- Large: high-concurrency production

-- 3. Set auto-stop for idle warehouses
-- Configure in warehouse settings

-- 4. Use warehouse caching effectively
-- Same queries on same data benefit from result cache

-- 5. Query optimization reduces DBU consumption
-- Use EXPLAIN to understand query costs
EXPLAIN SELECT * FROM large_table WHERE date = '2025-01-29';
5.3 Job Optimization
1. Use Jobs Compute instead of All-Purpose
Lower DBU rate for automated workloads

2. Optimize job duration
Faster jobs = lower cost
Use performance optimization techniques

3. Schedule jobs during off-peak hours
Some cloud regions have lower spot prices at night

4. Use task dependencies to parallelize
Multiple tasks running in parallel can finish faster

5. Avoid over-provisioning
Start small, scale up if needed
job_config = {
 "tasks": [{
 "task_key": "etl",
 "new_cluster": {
 "num_workers": 4, # Start with 4, not 20
 "node_type_id": "m5.xlarge" # Start smaller
 }
 }]
}
5.4 Storage Optimization
-- 1. Use Delta Lake for efficient storage
-- Compression and columnar format reduce storage costs

-- 2. Implement data lifecycle policies
-- Delete or archive old data

-- 3. Vacuum old files
VACUUM my_table RETAIN 168 HOURS; -- Keep 7 days of history

-- 4. Optimize file sizes
OPTIMIZE my_table; -- Compacts small files

-- 5. Use partitioning to enable faster deletes
-- Dropping a partition is cheaper than DELETE
ALTER TABLE my_table DROP PARTITION (year = 2020);
6. Cost Governance
6.1 Budget Alerts
from databricks.sdk import AccountClient

account = AccountClient()

Create budget with alerts
budget = account.budgets.create(
 budget={
 "name": "Monthly Data Platform Budget",
 "filter": {
 "workspace_id": {"values": ["workspace-1", "workspace-2"]}
 },
 "budget_configuration": {
 "amount": "10000", # $10,000 monthly budget
 "period": "MONTHLY",
 "alerts": [
 {
 "alert_configuration": {
 "quantity_threshold": "50", # Alert at 50%
 "quantity_type": "PERCENTAGE"
 }
 },
 {
 "alert_configuration": {
 "quantity_threshold": "80", # Alert at 80%
 "quantity_type": "PERCENTAGE"
 }
 },
 {
 "alert_configuration": {
 "quantity_threshold": "100", # Alert at 100%
 "quantity_type": "PERCENTAGE"
 }
 }
]
 }
 }
)
6.2 Cluster Policies for Cost Control
Policy limiting maximum cluster size and cost
cost_control_policy = {
 # Limit cluster size
 "num_workers": {
 "type": "range",
 "maxValue": 10,
 "defaultValue": 4
 },
 "autoscale.max_workers": {
 "type": "range",
 "maxValue": 10
 },

 # Restrict to approved instance types
 "node_type_id": {
 "type": "allowlist",
 "values": [
 "m5.large", # ~$0.10/hr
 "m5.xlarge", # ~$0.20/hr
 "m5.2xlarge" # ~$0.40/hr
]
 },

 # Require auto-termination
 "autotermination_minutes": {
 "type": "range",
 "minValue": 10,
 "maxValue": 120,
 "defaultValue": 30
 },

 # Require spot instances for workers
 "aws_attributes.availability": {
 "type": "fixed",
 "value": "SPOT_WITH_FALLBACK"
 },

 # Block expensive Photon clusters
 "spark_version": {
 "type": "regex",
 "pattern": "^(?!.*photon).*$" # Exclude Photon
 }
}
6.3 Access Controls
Limit who can create clusters
Use workspace admin settings to restrict cluster creation

Assign cluster policies to groups
w.permissions.set(
 object_type="cluster-policy",
 object_id=policy_id,
 access_control_list=[
 {
 "group_name": "data-engineers",
 "permission_level": "CAN_USE" # Can only use this policy
 }
]
)

Remove global cluster create permission
Data engineers can only create clusters via policy
7. Cost Review Process
7.1 Weekly Review
-- Weekly cost review query
SELECT
 DATE_TRUNC('week', usage_date) as week,
 team,
 sku_name,
 ROUND(SUM(list_cost_usd), 2) as weekly_cost,
 COUNT(DISTINCT cluster_id) as clusters_used,
 COUNT(DISTINCT job_id) as jobs_run
FROM finance.cost_summary
WHERE usage_date >= DATEADD(WEEK, -4, CURRENT_DATE())
GROUP BY DATE_TRUNC('week', usage_date), team, sku_name
ORDER BY week DESC, weekly_cost DESC;
7.2 Monthly Review Checklist
	Item
	Action

	Review top 10 expensive jobs
	Optimize or justify

	Check idle cluster hours
	Reduce auto-termination time

	Review cluster utilization
	Right-size under-utilized clusters

	Check SQL warehouse usage
	Convert to serverless if variable

	Review storage costs
	Vacuum and archive old data

	Update budgets
	Adjust based on actuals

Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	FinOps Team
	Initial document

This document is maintained by the FinOps & Platform Team. For questions or updates, contact the team via the #finops Slack channel.
image1.png
#MAST=CH
DIGITAL

